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Abstract Density functional theory (DFT) has become a basic tool for the study of
electronic structure of matter, in which the Hohenberg–Kohn theorem plays a funda-
mental role in the development of DFT. In this paper, we present a simple, selfcontained
and mathematically rigorous proof using the Fundamental Theorem of Algebra. We
also show the Hohenberg–Kohn theorem for systems with some more general external
potentials.
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1 Introduction

The modern formulation of density functional theory (DFT) originated in the work of
Hohenberg and Kohn [11], on which based the other classic work in this field by Kohn
and Sham [14], the Kohn–Sham equation, has become a basic mathematical model of
much of present-day methods for treating electrons in atoms, molecules, condensed
matter, and man-made structures [6,9,12,23,25].
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Although it is quite profound, DFT is not entirely elaborated yet (c.f., e.g.,
[5,17,18,22,26,28] and references cited therein). Since the relevant assumptions are
incompatible with the Kato cusp condition, Kryachko has pointed out that the usual re-
ductio ad absurdum proof of the original Hohenberg–Kohn theorem is unsatisfactory
[15,16,21]. Note that Kato theorem [13] tells the electron-nucleus cusp conditions
at nucleus positions only, we are not able to uniquely determine the electron density
just from the cusp conditions without using any other information such as the ana-
lyticity of density shown in [7,8], though the electron density uniquely determines
the external Coulombic potential. Consequently, there is a gap in the proof of the
theorem by using the Kato theorem in [16], for instance. Eschrig provided a proof
of the theorem based on a conjecture that is not easily proved mathematically [6].
We note that Lieb has tried to examine the theorem rigorously [22]. But Lieb’s proof
required that the N -particle wavefunction does not vanish in a set of positive mea-
sure that was unclear in a real system (c.f., e.g., [26]) until Mezey established the
holographic theorem [24] and Fournais et al proved the analyticity of density away
from the nuclei [7,8]. We see that one may use the Hohenberg–Kohn variational prin-
ciple to show the Hohenberg–Kohn theorem, provided that the differentiability of
the DFT variational is well set up [17,21]. We also understand that there are sev-
eral fine approaches trying to solve mathematical problems associated with DFT, in
which some sophisticated mathematics is directly or indirectly involved. We refer to
[1–4,10,15,17,18,29,19,21,22,24,26,28,30] and references cited therein for discus-
sions on the Hohenberg–Kohn theorem.

In this paper, we shall present a simple, selfcontained and mathematically rigorous
proof by using the Fundamental Theorem of Algebra only (see Sect. 4). We also show
the Hohenberg–Kohn theorem for systems with some more general external potentials
(see Sect. 5).

2 Hohenberg–Kohn theorem

We see that the approach of Hohenberg and Kohn is to formulate DFT as an exact
theory of many-body systems. The formulation applies to any system of interacting
particles in an external potential v, including any problem of electrons and fixed nuclei,
where the Hamiltonian can be written as

H = T +
N∑

i=1

v(xi )+ Vee. (2.1)

Here

T = −
N∑

i=1

h̄2

2me
∇2

xi

is the kinetic energy operator,

Vee = 1

2

N∑

i, j=1,i �= j

e2

|xi − x j |
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is the electron-electron repulsion energy operator, with h̄ is Planck’s constant divided
by 2π,me is the mass of the electron, {xi : i = 1, . . . , N } are the variables that
describe the electron positions, and e is the electronic charge. For an electronic Cou-
lomb system,

v(x) ≡ v{Z j },{r j }(x) = −
M∑

j=1

Z j e2

|x − r j | (2.2)

is determined by {Z j : j = 1, 2, . . . ,M}, which are the charges of the nuclei, and
{r j : j = 1, 2, . . . ,M}, which are the positions of the nuclei. The energy of the system
can be expressed by

E = (�,H�) = (�, (T + Vee)�)+
∫

R3

v(x)ρ(x)dx, (2.3)

where

ρ(x) ≡ ρ�(x)

= N
∑

σ1,σ2,...,σN

∫

R3(N−1)

|�((x, σ1), (x2, σ2), . . . , (xN , σN ))|2dx2 . . . dxN

(2.4)

is the single-particle density.
Consider Coulomb potential set

VC =
⎧
⎨

⎩−
M∑

j=1

Z j e2

|x − r j | : Z j ∈ R, r j ∈ R
3( j = 1, 2, . . . ,M); M = 1, 2, . . .

⎫
⎬

⎭ .

Let H0 = T + Vee and v be a single-particle potential in VC . The total Hamiltonian
is Hv = H0 + V , where

V =
N∑

i=1

v(xi ).

The associated ground state energy E(v) is defined to be

E(v) ≡ E(v, N ) = inf{(�,Hv�) : � ∈ WN }, (2.5)

where

WN = {� ∈ H1(R3N ) :
∑

σ1,σ2,...,σN

∫

R3N

|�|2dx1 . . . dxN = 1}.
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Note that there may or may not be a minimizer ψ in WN , and if there is one it may
not be unique [22]. Thus, we should introduce a set of minimizers

Gv ≡ Gv,N = arg inf{(�,Hv�) : � ∈ WN }.

Any � in Gv is called a ground state of (2.5). If � ∈ Gv , then

Hv� = E(v)� (2.6)

in the distributional sense.
The original Hohnberg–Kohn theorem (see page B865 of [11]) states that the

external potential v “is a unique functional of” the electronic density in the ground
state,“apart from a trivial additive constant.” In our notation, Lieb’s statement of this
theorem may be written as the following (see Theorem 3.2 of [22]):

Theorem 1 Suppose�v ∈ Gv and�v′ ∈ Gv′ . If v �= v′+constant, then ρ�v �= ρ�v′ .

For Coulomb type systems, indeed, we may state the Hohenberg-Kohn theorem as
follows:

Theorem 2 Suppose �v ∈ Gv and �v′ ∈ Gv′ with v, v′ ∈ VC . If v �= v′, then
ρ�v �= ρ�v′ .

3 Lemmas

To prove Theorem 2, we need some lemmas.

Lemma 1 For any n ≥ 2, there exist non-zero polynomials {Hn, j (s1, s2, . . . , sn) :
j = 0, 1, 2, . . . , 2n−1} with real coefficients satisfying

(i) Hn, j (s1, s2, . . . , sn)( j = 1, 2, . . . , 2n−1) are homogeneous:

Hn, j (λs1, λs2, . . . , λsn) = λ j Hn, j (s1, s2, . . . , sn), ∀λ ∈ R, j =1, 2, . . . , 2n−1,

Hn,0(s1, s2, . . . , sn) = 1,

and Hn,2n−1(s1, s2, . . . , sn) is a monic polynomial of degree 2n−1.
(ii) If t j ∈ R( j = 1, 2, . . . , n) and

δ =
n∑

j=1

t j ,

then

2n−1∑

j=0

Hn, j

(
t2
1 , t2

2 , . . . , t2
n

)
δ2

(
2n−1− j

)
= 0. (3.1)
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Proof We prove the conclusion by induction on n. First, for n = 2, t1 + t2 = δ, a
direct calculation implies

t4
1 + t4

2 − 2t2
1 t2

2 − 2δ2
(

t2
1 + t2

2

)
+ δ4 = 0.

Namely, Lemma 1 is true for n = 2.
For the induction step, suppose Lemma 1 is true for n. Let

n+1∑

j=1

t j = δ.

By the induction hypothesis, we have from

n∑

j=1

t j = δ − tn+1

that there exist non-zero polynomials

{Hn, j (s1, s2, . . . , sn) : j = 0, 1, 2, . . . , 2n−1}

with real coefficients satisfying Hn, j (s1, s2, . . . , sn)( j = 1, 2, . . . , 2n−1) are homo-
geneous, Hn,2n−1(s1, s2, . . . , sn) is a monic polynomial of degree 2n−1, and

2n−1∑

j=0

Hn, j (t
2
1 , t2

2 , . . . , t2
n )(δ − tn+1)

2(2n−1− j) = 0. (3.2)

Applying Newton binomial theory, we then get that

Hn,2n−1

(
t2
1 , t2

2 , . . . , t2
n

)
+ δ2n + t2n

n+1

+
2n−1−1∑

j=1

Hn, j

(
t2
1 , t2

2 , . . . , t2
n

) 2n−1− j∑

l=0

(
2n − 2 j

2l

)
δ2n−2 j−2l t2l

n+1

+
2n−1−1∑

l=1

(
2n

2l

)
δ2n−2l t2l

n+1

= δtn+1

⎛

⎝
2n−1−1∑

j=1

Hn, j

(
t2
1 , t2

2 , . . . , t2
n

) 2n−1− j∑

l=1

(
2n − 2 j
2l − 1

)
δ2n−2 j−2l t2l−2

n+1

⎞

⎠

+δtn+1

2n−1∑

l=1

(
2n

2l − 1

)
δ2n−2l t2l−2

n+1 .
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Taking squares of both sides of the above =, we arrive at the conclusion of Lemma 1
when n is replaced by n + 1. This completes the proof.

The following conclusion results from page 78 of [6] (c.f. also [20,22,26]):

Lemma 2 Given v, v′ ∈ VC . Let ρv = ρ�v and ρv′ = ρ�v′ with �v ∈ Gv and
�v′ ∈ Gv′ . If ρv = ρv′ , then

(
N∑

i=1

(v′ − v)(xi )− (E(v′)− E(v))

)
�v = 0 in R

3N . (3.3)

Proof For completion, we present a proof here, which essentially comes from the
proof of Theorem 1 of [26]. We see that

E(v) = (�v,Hv�v) ≤ (�v′ ,Hv�v′)dx

= E(v′)−
∫

R3

ρv′(v′ − v)dx .

Similarly,

E(v′) ≤ E(v)−
∫

R3

ρv(v − v′)dx .

Thus we obtain that if ρv = ρv′ , then

E(v′) = E(v)−
∫

R3

ρv(v − v′)dx,

or
∫

R3

ρv(v − v′)dx = E(v)− E(v′),

which leads to E(v) = (�v′ ,Hv�v′). Therefore �v′ ∈ Gv and

Hv�v′ = E(v)�v′ .

By a similar argument, we have

Hv′�v = E(v′)�v.

Since

Hv�v = E(v)�v,

123



2752 J Math Chem (2012) 50:2746–2754

we arrive at (3.3). This completes the proof.

Due to the Fundamental Theorem of Algebra (c.f., e.g., [27]), every non-zero sin-
gle-variable polynomial with real or complex coefficients has exactly as many real or
complex zeroes as its degree, if each zero is counted up to its multiplicity. Hence we
have a multivariate version of the Fundamental Theorem of Algebra as follows:

Lemma 3 The Lebesgue’s measure of the set of zeroes of any non-zero multivariate
polynomial with real coefficients is zero.

4 Proof of Theorem 2

In this section, we prove Theorem 2, the new statement of Hohenberg-Kohn theorem.

Proof Let ρv = ρ�v and ρv′ = ρ�v′ . It is sufficient to prove that v = v′ if ρv = ρv′ .
Note that there exist m ≥ 1, r j ∈ R

3 and α j ∈ R( j = 1, 2, . . . ,m) such that

(v′ − v)(x) =
m∑

j=1

α j

|x − r j | .

Suppose v′ �= v, we have α j0 �= 0 for some j0 ∈ {1, 2, . . . ,m}.
Let {Hn, j (s1, s2, . . . , sn) : j = 0, 1, 2, . . . , 2n−1} be the non-zero polynomials

with real coefficients satisfying the conclusion of Lemma 1 with n = m N and

δ = α j0

|x1 − r j0 |
,

t1 = E(v′)− E(v),

{tl : l = 2, 3, . . . , n} =
{

L
−α j

|xi − r j | : i = 1, 2, . . . , N ; j = 1, 2, . . . ,m

}
\{−δ}.

We see that if equation

N∑

i=1

(v′ − v)(xi ) = E(v′)− E(v) (4.1)

holds, then there exists a non-zero multivariate polynomial P(s1, s2, . . . , sn)with real
coefficients such that

P
(
|x1 − r1|2, . . . , |xi − r j |2, . . . , |xN − rm |2

)
= 0,

xi ∈ R
3 \ {r j : j = 1, 2, . . . ,m}, i = 1, 2, . . . , N . (4.2)

As a result, if (x1, x2, . . . , xN ) is any zero of (4.1), then (x1, x2, . . . , xN ) is an zero
of (4.2). Note that P(|x1 − r1|2, . . . , |xi − r j |2, . . . , |xN − rm |2) is a polynomial of
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(x1, x2, . . . , xN )with real coefficients. We obtain from Lemma 3 that the set of zeroes
of (4.1) are of zero measure in R

3N . Since

N∑

i=1

(v′ − v)(xi )− (E(v′)− E(v))

is continuous over domain

{(x1, x2, . . . , xN ) : xi ∈ R
3 \ {r j : j = 1, 2, . . . ,m}, i = 1, 2, . . . , N }

as a function of (x1, x2, . . . , xN ) ∈ R
3N , we must have �v = 0 almost every where

in R
3N from (3.3), which is a contradiction to

∑

σ1,σ2,...,σN

∫

R3N

|�v|2dx1 . . . dxN = 1.

This completes the proof.

5 Generalization

We point out that our arguments can be applied to establishing Hohnberg-Kohn type
theorem for other kinds of external potentials.

Let x = (ξ1, ξ2, ξ3) ∈ R
3, define V = L3/2(R3)+ L∞(R3), S= the set of positive

rational numbers, and

VG = V ∩ span

{
ξ i

1ξ
j

2 ξ
k
3

|x − r |s : i, j, k = 0, 1, 2, . . . ; r ∈ R
3; 2 > s ∈ S

}
. (5.1)

Note that Lemma 2 is valid when VC is replaced by V. Applying Lemma 3, we obtain
from the proof of Theorem 2 that Theorem 2 is also true when VC is replaced by VG .
Namely, we have

Theorem 3 Suppose �v ∈ Gv and �v′ ∈ Gv′ with v, v′ ∈ VG. If v �= v′, then
ρ�v �= ρ�v′ .
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